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Abstract

We develop a framework for generalized variational inference in infinite-
dimensional function spaces and use it to construct a method termed Gaussian
Wasserstein inference (GWI). GWI leverages the Wasserstein distance between
Gaussian measures on the Hilbert space of square-integrable functions in order to
determine a variational posterior using a tractable optimization criterion and avoids
pathologies arising in standard variational function space inference. An exciting
application of GWI is the ability to use deep neural networks in the variational
parametrisation of GWI, combining their superior predictive performance with
the principled uncertainty quantification analogous to that of Gaussian processes.
The proposed method obtains state-of-the-art performance on several benchmark
datasets.

1 Introduction

In the past decade, considerable effort has been invested in developing Bayesian deep learning
approaches [Welling and Teh, 2011, Chen et al., 2014, Blundell et al., 2015, Gal and Ghahramani,
2016, Kendall and Gal, 2017, Ritter et al., 2018, Khan et al., 2018, Maddox et al., 2019]. There are at
least two key advantages to Bayesian models. Firstly, Bayesian model averaging is known to improve
predictive performance [Komaki, 1996] even in misspecified situations [Fushiki, 2005, Ramamoorthi
et al., 2015]. The empirical success of methods such as deep ensembles [Lakshminarayanan et al.,
2017] may be interpreted as compelling evidence for this claim [Wilson and Izmailov, 2020]. Sec-
ondly, Bayesian models provide the user with a predictive distribution for an unseen data point. This
can be naturally leveraged to quantify posterior uncertainty.

Even though impressive progress has been made, there are problems that remain unresolved. The
prior distribution for the unknown function is typically induced by a prior distribution over deep
neural network weights (and biases). It is hard to interpret the inductive bias in a function space that
is induced by such priors for weights and unclear how one might incorporate prior knowledge about
the unknown function. Additionally, the resulting inference problem is extremely high-dimensional
and requires approximation techniques that are either computationally expensive [Neal, 2012] or so
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crude that the approximate posterior may suffer from pathological behavior [Foong et al., 2020]. The
difficulties of performing Bayesian inference for weights have led to the emergence of methods that
approach the problem in function space directly [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020,
Ma and Hernández-Lobato, 2021].

The theory of constructing prior distributions in function spaces is well developed and the most
famous class of prior distributions are Gaussian processes. They have been commonly used for
decades in the machine learning community to elicit interpretable functional priors and are known to
have well-calibrated predictive uncertainties [Rasmussen, 2003].

In a separate thread of research, a new powerful inference framework called Generalized Variational
Inference (GVI) has been recently developed [Knoblauch et al., 2019]. The authors argue that
standard assumptions of Bayesian inference such as well-specified priors, well-specified likelihoods
and infinite computing power are often violated in practice. They therefore propose a generalized view
on Bayesian inference that takes these points into consideration. We extend the work of Knoblauch
et al. [2019] to situations where no probability density functions for the prior exist and are thus able to
use generalized variational inference in infinite-dimensional function spaces directly. We then specify
both the prior and variational measures as Gaussian measures and measure their dissimilarity using
the Wasserstein distance. This results in the method which we call Gaussian Wasserstein Inference
in Function Spaces (GWI-FS). An exciting application of our method is the ability to equip deep
neural networks with uncertainty quantification using the framework analogous to that of Gaussian
processes, resulting in a state-of-the-art method termed GWI-net. Our main contributions are:

• We create a general framework for inference in function space based on Gaussian measures
on the space of square-integrable functions,

• We derive an objective function that can be expressed in terms of the parameters of the
Gaussian measures,

• We derive a tractable approximation to our objective function that is valid for (almost)
arbitrary kernels and mean functions,

• We demonstrate the utility of our method by obtaining state-of-the-art results on the UCI
regression datasets and on Fashion MNIST and CIFAR 10 2.

2 Related Work

GWI-FS draws on the work developed in the Gaussian process literature, but can be used to equip
traditional neural network architectures with uncertainty. We therefore give a brief overview of
the relevant related methods in both the Bayesian neural network (BNNs) and Gaussian process
community.

Bayesian neural networks Traditionally Bayesian neural networks have been assigned priors in
weight space. The effects of various priors on inference and uncertainty quantification are still
not well understood [Fortuin et al., 2021]. As the posterior (over weights) is intractable, sampling
algorithms such as Hamiltonian Monte Carlo (HMC) were initially proposed Neal [2012]. Due to
the unfavorable scaling properties of standard HMC which requires the full gradient, batch-size
approximations of HMC evolved [Chen et al., 2014]. Another line of research exploits Langevin
dynamics to generate posterior samples [Welling and Teh, 2011] in weight space.

Variational methods for BNNs in weight space In variational inference, the true posterior is
approximated by a more tractable so-called variational distribution. The user specifies a class of
approximate posterior measures and selects the best posterior approximation by maximizing the
so-called evidence lower bound (ELBO). The Bayes by Backprop [Blundell et al., 2015] method is
one such variational mean-field approximation of the weight-space posterior. In variational dropout
[Gal and Ghahramani, 2016], a specific approximation is chosen to reinterpret dropout [Srivastava
et al., 2014] at test time as a variational procedure.

Variational methods for BNNs in function spaces Inference in weight space is challenging, as the
problem is typically high-dimensional and the posterior distribution over weights multi-modal. This

2Codebase: https://github.com/MrHuff/GWI
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led to a line of research in which inference algorithms are formulated in function spaces. Variational
implicit processes [Ma et al., 2019] approximate the BNN posterior as a linear combination of draws
from the prior. Functional-BNN [Sun et al., 2019] matches a BNN to a GP prior and performs
inference by optimising a functional Kullback-Leibler (KL) divergence exploiting score function
estimators [Li and Turner, 2017]. Rudner et al. [2020] use a local approximation to the prior and
variational posterior processes to obtain a tractable functional Kullback-Leibler divergence. Ma and
Hernández-Lobato [2021] generalise the variational family in Ma et al. [2019] and obtain a more
scalable procedure by using a different approximation to the functional KL-divergence. Recent
work has also proposed to adapt BNN priors to interpretable functional priors by minimizing the
Wasserstein distance between a BNN prior and a Gaussian process [Tran et al., 2020].

Gaussian processes Standard Gaussian process regression [Rasmussen, 2003] allows interpretable
prior specification but scales poorly with respect to the number of data points. As a result, a plethora
of approximation techniques are introduced. On one hand, there are variational approximations to the
true posterior [Titsias, 2009, Hensman et al., 2013] and several extensions [Hensman et al., 2017,
Salimbeni et al., 2018, Dutordoir et al., 2020]. On the other hand, GPU utilization is combined with
Krylov subspace methods to obtain scalability [Gardner et al., 2018, Wang et al., 2019].

3 Background

In this section we give some background on generalized variational inference in infinite dimensions
and introduce Gaussian measures in Hilbert spaces. We further discuss their relation to the more
familiar Gaussian processes afterwards.

3.1 Generalized Variational Inference in Function Spaces

In functional variational inference, we assign a prior p(f) to the unknown function f ∈ E, whereE is
a function space3. The prior is combined with the likelihood p(y|f) to give the posterior p(f |y). The
posterior is often intractable which is why in variational inference we specify a tractable variational
approximation q(f) to p(f |y) and train our model by maximising the evidence lower bound (ELBO)

L = Eq(f)

[
log p(y|f)

]
− DKL

(
q(f), p(f)

)
, (1)

where DKL denotes the KL divergence. Note that in the case where E is infinite dimensional p(f)
and q(f) cannot be probability density functions with respect to the Lebesgue measure [see e.g.
Hunt et al., 1992, for a discussion], which is why the above notation, although commonly used, is
imprecise. What we in fact mean are the probability measures over E associated with the prior and
variational approximation. We will denote these measures as PF and QF from now on to make this
difference explicit. The ELBO in this notation reads as

L := EQ
[

log p(y|F )
]
− DKL

(
QF ,PF

)
. (2)

Note that the KL divergence (for measures) is defined as

DKL
(
QF ,PF

)
=

∫
log

(
dQF

dPF
(f)

)
dQF (f), (3)

where we assume that QF is dominated by the measure PF which guarantees the existence of the
Radon-Nikodym derivative dQF /dPF . A number of papers focus on obtaining tractable approxima-
tions of (3) [Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]. However, the
use of KL-divergence in infinite-dimensional function spaces can be a delicate task, since benign
constructions of priors and variational approximations may not satisfy that QF is dominated by PF
which leads to DKL

(
QF ,PF

)
=∞ [Burt et al., 2020]. This often renders the objective (2) useless or

at least problematic.

A true Bayesian is committed to the use of the KL divergence in (2) as maximizing L is equivalent to
minimizing the KL divergence between the true posterior measure and the variational measure. This
equivalence is typically demonstrated using pdfs but the argument generalizes to infinite dimensions

3We assume E to be a Polish space, which avoids technical difficulties in defining the posterior measure
[Ghosal and Van der Vaart, 2017, Chapter 1.3 ]
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as is shown for GPs in Matthews et al. [2016] or in a more measure theoretic formulation in Theorem
4 of Wild and Wynne [2021].

However, Knoblauch et al. [2019] argue that given the problems of prior and likelihood specification
as well as available compute, an axiomatically justified way of moving from prior to posterior
beliefs is by solving a more general optimization problem [Knoblauch et al., 2019, Theorem 15].
Crucially it is valid to replace the KL-divergence by an arbitrary measure of dissimilarity D satisfying
D(QF ,PF ) ≥ 0 and D(QF ,PF ) = 0⇒ QF = PF . The arguments in Knoblauch et al. [2019] are
made assuming the existence of a pdf for the prior, but they rely solely on a reformulation of Bayesian
inference as optimization problem [Knoblauch et al., 2019, Chapter 2]. We show in Appendix A.1 that
this reformulation can also be made for infinite-dimensional prior measures and therefore consider
the generalized loss

L := −EQ
[

log p(y|F )
]

+ D
(
QF ,PF

)
, (4)

a valid optimization objective for an arbitrary dissimilarity measure D. This is merely an infinite-
dimensional version of equation (10) in Knoblauch et al. [2019]. We refer to inference targeting the
objective (4) as Generalized variational inference in function space (GVI-FS).

Henceforth, the particular instance of GVI-FS that we explore is where both PF and QF are Gaussian
measures (on an infinite-dimensional Hilbert space) and D is chosen to be the Wasserstein metric
[Kantorovich, 1960]. We will refer to this setting as Gaussian Wasserstein Inference in Function
Space (GWI-FS).

3.2 Gaussian Random Elements and Gaussian Measures in Hilbert spaces

In this section we introduce Gaussian random elements (GRE) and Gaussian measures in Hilbert
spaces – these concepts are somewhat technical but crucial in the construction of our method. We then
describe their close relationship to the more familiar Gaussian process notions in the next section.

Let
(
Ω,A,P

)
be the underlying (physical) probability space and

(
H, 〈·, ·〉

)
be a Hilbert space.

Gaussian random elements A measurable function F : Ω→ H is called GRE (in H) if and only
if 〈F, h〉 : Ω → R has a scalar Gaussian distribution for all h ∈ H .4 Every GRE F has a mean
element m ∈ H defined by

m :=

∫
F (ω) dP(ω) (5)

and a (linear) covariance operator C : H → H defined by

Ch(·) :=

∫
〈F (ω), h〉F (ω)P(ω)− 〈m,h〉m. (6)

for h ∈ H . Both integrals are to be understood as Bochner integrals [Kukush, 2020, Chapter 3]. The
Bochner integral has the property that

〈 ∫
F (ω) dP(ω), h〉 =

∫
〈F (ω), h〉 dP(ω) for all h ∈ H . This

combined with Fubini’s theorem and the definition of a GRE implies that
〈F, h〉 ∼ N (〈m,h〉, 〈Ch, h〉

)
, (7)

for any h ∈ H with N (µ, σ2) denoting the normal distribution with mean µ ∈ R and variance
σ2 > 0. Similarly we denote F ∼ N (m,C) for a GRE in H with mean element m and covariance
operator C. It can be shown that the covariance operator C of a GRE is a positive self-adjoint
trace-class operator. Conversely, for every positive self-adjoint trace class operator and every m ∈ H ,
there exists a GRE with F ∼ N (m,C) [Bogachev, 1998, Theorem 2.3.1].

Gaussian measures The push-forward measure of P through F is defined as PF (A) :=
P
(
F−1(A)

)
for all Borel-measurable A ⊂ H . If F ∼ N (m,C) is a GRE, we call P := PF

a GM and write P = N (m,C). Note that GMs or equivalently GREs allow us to specify probability
distributions over (infinite-dimensional) Hilbert spaces by using a given mean element and a given
covariance operator.

Details about Gaussian Measures in Hilbert spaces can be found in Chapter 2 of Da Prato and Zabczyk
[2014] or in Kukush [2020]. In fact, Gaussian measures can be defined on even more general linear
spaces such as Banach or Fréchet spaces [Bogachev, 1998].

4We allow for the degenerate case where the variance of 〈F, h〉 is zero. This means we interpret a Gaussian
with variance zero as Dirac measure.
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3.3 Gaussian Processes and Their Corresponding Measures

In this section we describe how Gaussian processes – a standard tool to assign functional priors in
Bayesian machine learning – are related to Gaussian measures.

Let
(
Ω,A,P

)
be the underlying (physical) probability space and X ⊂ RD be measurable. The

(product-) measurable mapping G : Ω × X → R is called a Gaussian process (GP) if and only if
for all N ∈ N and all X = {xn}Nn=1 ⊂ X the random vector G(X) :=

(
G(·, x1), . . . , G(·, xN )

)T
is multivariate Gaussian. For a GP G we define a mean function m(x) := E

[
G(x)

]
, x ∈ X , and

a covariance function by k(x, x′) := C[G(x), G(x′)
]

for x, x′ ∈ X . Here E denotes the expected
value and C[·, ·] the covariance. It follows from the definition that G(X) ∼ N

(
m(X), k(X,X)

)
for

any {xn}Nn=1 ⊂ X , where we define m(X) :=
(
m(xn)

)N
n=1

and k(X,X) :=
(
k(xn, xn′)

)N
n,n′=1

.
We write G ∼ GP (m, k) for a GP with mean function m and covariance function k. Note that by
the properties of the covariance we know that k(X,X) is a (symmetric) positive semi-definite matrix
for all {xn}Nn=1 ⊂ X and N ∈ N. A function with this property is called kernel, a terminology that
we adopt henceforth. Kolmogorov’s existence theorem [Billingsley, 2008, Section 36] guarantees the
existence of a Gaussian process for any kernel k and any mean function m. The standard reference
for Gaussian processes in machine learning is Rasmussen [2003].

The main advantage of Gaussian processes in specifying priors over a function space is that the kernel
k allows us to incorporate readily interpretable prior assumptions, such as smoothness or periodicity.
For example, choosing the squared exponential kernel [Rasmussen, 2003] implies that the unknown
function is infinitely differentiable and that the correlation of the functional output is higher the closer
the inputs are.

In order to insert the Gaussian process prior into our generalized loss in (4) we need to know the
probability measure that is associated to the Gaussian process. In general, we can associate more
than one Gaussian measure with a given Gaussian process. For example:

• If the GP has continuous sample paths we can associate a Gaussian measure on the space E
of continuous functions with it [Lifshits, 2012, Example 2.4].

• If the GP has square-integrable sample paths we can associate a Gaussian measure on the
Hilbert space of square-integrable functions with it (cf. Theorem 1).

These sample path properties can be guaranteed under additional assumptions on the kernel. The
next theorem discusses one such kernel condition which guarantees the GP to have sample paths in
the Hilbert space of square integrable functions, denoted L2(X , ρ,R), with inner product 〈g, h〉2 :=∫
X g(x)h(x) dρ(x).

Theorem 1. Let F ∼ GP (m, k) be a GP with mean m ∈ L2(X , ρ,R) and kernel k such that∫
X
k(x, x) dρ(x) <∞. (8)

We call a kernel satisfying (8) trace-class kernel. Then the mapping F̃ : Ω→ L2(X , ρ,R) defined as
F̃ (ω) := F (ω, ·) is a Gaussian random element with mean m and covariance operator C given as

Cg(·) :=

∫
k(·, x′)g(x′) dρ(x′) (9)

for any g ∈ L2(X , ρ,R). Consequently P := PF ∼ N (m,C) is a Gaussian measure.

Proof. The fact that F̃ as defined above is a GRE follows immediately from Example 2.3.16 in
Bogachev [1998]. The fact that m is its mean and C as defined in (9) is its covariance operator
follows from Fubini’s theorem.

It shall be noted that there is no need to appeal to GPs in order to justify the use of GMs. In fact, it has
recently been demonstrated that variational inference for GPs can be formulated purely in terms of
GMs [Wild and Wynne, 2021]. In the following sections we will therefore deploy GMs without any
reference to GPs, but it is of course always possible to think of them as the measures that correspond
to GPs where the kernel satisfies an additional assumption such as (8).
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4 Gaussian Wasserstein Inference in Function Spaces

This section describes how the Wasserstein distance between Gaussian measures can be used to
obtain a tractable optimization target for inference in function spaces. In the end, we discuss several
parametrizations of GWI and introduce our main inference method - the GWI-net.

4.1 Model description

Let {(xn, yn)}Nn=1 ⊂ X × Y be N ∈ N paired observations. We assume that X ⊂ RD, D ∈ N
and further that Y = R for regression and Y = {1, . . . , J} for classification with J ∈ N classes.
We focus in our exposition here on the regression case but have given the relevant derivations for
classification in Appendix A.6.

As pointed out in section 3.1, GVI in function space minimises the generalized loss L =
−EQ

[
log p(y|F )

]
+ D

(
QF ,PF

)
. We make the mild assumption that the unknown function f

is square integrable with respect to the data distribution ρ on X which means f ∈ E = L2(X , ρ,R).
The prior P := PF is described by a Gaussian measure with mean mP ∈ L2(X , ρ,R) and covari-
ance operator CP described by a trace-class kernel k : X × X → R which means it is given as
(CP f)(x) :=

∫
X k(x, x′)f(x′) dρ(x′) for all f ∈ L2(X , ρ,R). We assume a Gaussian likelihood

for y := (y1, . . . , yN ) given as p(y|f) :=
∏N
n=1 p(yn|f)5 with

p(yn|f) := N (yn | f(xn), σ2), (10)

where N (· |µ, σ2) denotes the pdf of a normal distribution with mean µ ∈ R and variance σ2 > 0.
This prior and likelihood are natural choices as they mimic the standard formulation of Gaussian
process regression. The variational approximation of the posterior is chosen to be another Gaussian
measure Q := QF with arbitrary mean mQ ∈ L2(X , ρ,R) and arbitrary covariance operator CQ
induced by a trace-class kernel r: (CQf)(x) :=

∫
X r(x, x

′)f(x′) dρ(x′) for all f ∈ L2(X , ρ,R).

It remains for us to select a dissimilarity measure D. As already pointed out in the introduction we
decide to use the Wasserstein distance W2 (a formal definition is given in Appendix A.3). This choice
was guided by two considerations:

1. The Wasserstein metric was proven to be a useful metric for probability distributions in
machine learning applications [Arjovsky et al., 2017, Tran et al., 2020]. Furthermore the
Wasserstein metric is known to have desirable statistical properties [Panaretos and Zemel,
2019].

2. The Wasserstein distance is tractable for arbitrary Gaussian measures on (separable) Hilbert
spaces [Gelbrich, 1990] and given as

W 2
2 (P,Q) = ‖mP −mQ‖22 + tr(CP ) + tr(CQ)− 2 · tr

[(
C

1/2
P CQC

1/2
P

)1/2]
, (11)

where tr denotes the trace of an operator and C1/2
P is the square root of the positive, self-

adjoint operator CP . This is in stark contrast to the KL-divergence that is infinite whenever
QF is not dominated by PF and even in the case where it is finite there exists no explicit
formula for the KL-divergence in infinite dimensions.

The generalized loss for our model is therefore given as

L = −
N∑
n=1

EQ

[
logN

(
yn |F (xn), σ2

)]
+W2(P,Q). (12)

Note that the expected log-likelihood in (12) can be calculated analytically as

EQ

[
logN

(
yn |F (xn), σ2

)]
= −N

2
log(2πσ2)−

N∑
n=1

(
yn −mQ(xn)

)2
+ r(xn, xn)

2σ2
. (13)

5Astute readers may notice that the definition of the likelihood contains a pointwise evaluation f(xn) which
may not be a well defined operation on L2(X , ρ,R). We detail in Appendix 30 how that problem can be
circumvented and that in fact F (x) ∼ N (m(x), k(x, x)) as one would expected.
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It remains to produce an approximation of (11) in order to obtain a tractable inference procedure.
To this end, note that by definition ‖mP − mQ|22 =

∫ (
mP (x) − mQ(x)

)2
dρ(x) and further

tr(CP ) =
∫
k(x, x) dρ(x) [Brislawn, 1991]. We now replace the true input distribution ρ with

the empirical data distribution ρ̂ := 1
N

∑N
n=1 δxn

, where δx denotes the Dirac measure in x ∈ X .
This gives ‖mP −mQ|22 ≈ 1

N

∑N
n=1

(
mP (xn) −mQ(xn)

)2
, tr(CP ) ≈ 1

N

∑N
n=1 k(xn, xn) and

tr(CQ) ≈ 1
N

∑N
n=1 r(xn, xn). It remains to provide an approximation of tr

[(
C

1/2
P CQC

1/2
P

)1/2]
.

The key idea is to approximate the spectrum of C1/2
P CQC

1/2
P by that of an appropriate kernel matrix.

Details are discussed in Appendix A.4. This leads to the following final approximation for the
Wasserstein metric

Ŵ :=
1

N

N∑
n=1

(
mP (xn)−mQ(xn)

)2
+

1

N

N∑
n=1

k(xn, xn) (14)

+
1

N

N∑
n=1

r(xn, xn)− 2√
NNS

NS∑
s=1

√
λs
(
r(XS , X)k(X,XS)

)
, (15)

where XS := (xS,1, . . . , xS,NS
) with xS,1, . . . xS,NS

∈ RD being subsampled from the in-
put data X . Further r(XS , X) :=

(
r(xS,s, xn)

)
s,n

and k(X,XS) :=
(
k(xn, xS,s)

)
n,s

for
n = 1, . . . , N , s = 1, . . . , NS and λs

(
r(XS , X)k(X,XS)

)
denotes the s-th eigenvalue of the

matrix r(XS , X)k(X,XS) ∈ RNS×NS .

The combination of (13), (14) and (15) gives a generalized loss that is tractable in terms ofmP ,mQ, k,
and r. If we disregard computation time of mP ,mQ, k and r, the generalized loss can be evaluated
in O(N +N2

SN +N3
S), where typically NS � N , e.g. NS = 100. We provide a batch version of

our loss in Appendix A.5 which reduces the computations to O(N2
SNB +N3

S) where NB � N is
the batch-size. Note, however, that the final computation time for our method will be determined by
the complexity hidden in the evaluation of mQ, mP , k, and r as we need NB evaluations of mQ and
mP and NS ·NB evaluations of r and k per iteration.

4.2 Parameterisations of Prior and Variational Measure

The prior for our model is given as P = N (mP , CP ) with CP induced by a trace-class kernel k.
One of the advantages of the proposed approach is that any trace-class kernel is allowed and this is
where one can incorporate specific assumptions and domain expertise. This is a thoroughly studied
topic: the prior kernel can encode periodicity [Durrande et al., 2016], geometric intuition [van der
Wilk et al., 2018], and even model linear constraints for the unknown function [Jidling et al., 2017].
In order to keep the exposition simple and maintain focus on the inference, however, and in line with
using simple priors on network weights in standard Bayesian deep learning, we opt for a simple zero
mean prior mP = 0 and a standard ARD kernel k given as

k(x, x′) = σ2
f exp

(
− 1

2

D∑
d=1

(xd − x′d)2

α2
d

)
(16)

for x, x′ ∈ X ⊂ RD. We refer to σf > 0 as kernel scaling factor and to αd > 0 as length-scale for
dimension d. The parameters σf and α := (α1, . . . , αD) are called prior hyperparameters.

The rest of the section explores various choices for the variational mean mQ and the variational
kernel r. The parameters appearing in the specification of mQ and r are referred to as variational
parameters.

GWI: Stochastic variational Gaussian process Let z1, . . . , zM ∈ X be a subsample of the data
X with M � N . We define the posterior mean

mQ(x) := mP (x) +

M∑
m=1

βmkm(x) (17)

with βm ∈ R and km(x) := k(x, zm), m = 1, . . . ,M where k is the prior kernel k and β :=
(β1, . . . , βM ) ∈ RM are variational parameters. Define further the variational kernel

r(x, x′) = k(x, x′)− kZ(x)T k(Z,Z)−1kZ(x) + kZ(x)TΣkZ(x). (18)

7



Figure 1: : Training data : Unseen data : Inducing points
We query the above functions at N = 1000 equidistant points and add white noise with ε ∼
N (0, 0.52). We use M = 30 inducing points and train our method as described in Appendix A.7.
The plot shows mQ(x)± 1.96

√
V[Y ∗(x)|Y ] where V[Y ∗(x)|Y ] is the posterior predictive variance

given as r(x, x) + σ2.

This choice of mQ and r essentially recovers the stochastic variational Gaussian processes (SVGP)
model of Titsias [2009]. Note that in our framework it is straightforward to use all (or just more) basis
functions for the mean mQ(x) := mP (x) +

∑N
n=1 βnkn(x) where kn(x) := k(x, xn), βn ∈ R,

n = 1, . . . , N . This mirrors the construction in Cheng and Boots [2017] where we allow more
parameters to learn the mean than in SVGP. However, both Titsias [2009] and Cheng and Boots
[2017] use a different objective function than GWI to learn the unknown parameters.

GWI: deep neural network with SVGP An interesting approach is to parameterise the posterior
mean as a deep neural network (DNN). We assume the DNN has L ∈ N hidden layers and the
width of layer ` = 1, . . . , L is denoted D` with D0 := D and DL+1 = 1. This means we define
g1(x) := W 1x+b1 and further h`(x) := φ

(
g`(x)

)
, g`+1(x) := W `+1h`(x)+b`+1 for ` = 1, . . . , L.

Here W l+1 is D`+1 × D` matrix, b`+1 ∈ RD`+1 is a bias vector for layer l and φ an activation
function. We can then define the variational mean as mQ(x) := mP (x) + gL+1(x). If we choose the
SVGP kernel r in (18), we essentially predict with a neural network and quantify uncertainty with a
(sparse) Gaussian process, capturing the beneficial properties of both.

Neural networks have been combined in several ways with GPs [Wilson et al., 2016, Tran et al.,
2020]. However, to the best of our knowledge they were not used to directly parametrize the posterior
in the context of generalized variational inference in function space. The spirit of our approach is
fundamentally different: rather than thinking of a neural network as a model which needs to be made
Bayesian, we use it as a parametrisation of a variational posterior.

We note that we do not here provide an exhaustive study on how to best parameterize the variational
measure. This paper is focused on demonstrating the ability of the proposed method to obtain
valid uncertainty quantification. An exploratory study on how properties and quality of uncertainty
quantification relate to different choices of mQ and r is reserved for future work. We mention
potential problems that can occur from misspecification in Appendix A.10.

5 Experiments

We show results for GWI with the SVGP mean (17) and the SVGP kernel (18). We use the shorthand
GWI: SVGP for this approach. Additionally we implement the DNN mean with the SVGP kernel
(18). This combination achieves impressive results on various regression and classification tasks. We
call this method GWI: DNN-SVGP or simply GWI-net.

Illustrative Examples In Figure 1 we illustrate GWI-net on a few toy examples. One can clearly
see that the posterior predictive variance expands for regions lacking observations which demonstrates
the ability of our method to quantify uncertainty. Additionally, we provide an example for two-
dimensional inputs in Appendix A.9. There we show that the pathologies regarding the quantification
of in-between uncertainty discussed in Foong et al. [2020] are not present for our method.
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UCI Regression In Table 1 we report the average test negative log-likelihood (NLL) (cf. Appendix
A.7 for a definition) of GWI: SVGP and GWI-net (GWI: DNN-SVGP) and the results of several
weight-space approaches for BNNs: Bayes-by-Backprop (BBB) [Blundell et al., 2015], variational
dropout (VDO) [Gal and Ghahramani, 2016], and variational alpha dropout (α = 0.5) [Li and Gal,
2017]. We also compare with four function-space BNN inference methods: functional variational
inference with BNN prior (FVI) [Ma and Hernández-Lobato, 2021], variationally implicit processes
(VIP) with BNNs, VIP-Neural processes [Ma et al., 2019], and functional BNNs (FBNNs) [Sun et al.,
2019].

Dataset N D GWI FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GPSVGP DNN-SVGP
BOSTON 506 13 2.8±0.31 2.27±0.06 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 3.24±0.09 2.64±0.06 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 1.81±0.19 0.91±0.12 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -0.86±0.38 -1.2±0.03 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 3.35±0.22 2.74±0.02 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.84±0.04 2.87±0.0 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.02 0.76±0.08 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 2.37±0.55 0.29±0.1 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.25±0.08 -6.76±0.1 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
Mean Rank 5.5 2.06 2.22 3.33 4.94 7 6.11 4.83

Table 1: The table shows the average test NLL on several UCI regression datasets. We train on
random 90% of the data and predict on 10%. This is repeated 10 times and we report mean and
standard deviation. The results for our competitors are taken from Ma and Hernández-Lobato [2021].

One can see that GWI-net obtains the best mean rank of all methods being the best model on 4/9
datasets and performing competitively on all datasets. Note that we exclude FBNN and exact Gaussian
processes from the comparison because their computational complexity is often prohibitively large.

Classification and OOD Detection We demonstrate the ability of GWI to perform image classifi-
cations on Fashion MNIST [Xiao et al., 2017] and CIFAR-10 [Krizhevsky et al., 2009]. We compare
to FVI, mean-field variational inference (MVFI) [Blundell et al., 2015], maximum a posteriori ap-
proximation (MAP), K-FAC Laplace-GNN [Martens and Grosse, 2015] and its dampened version
[Ritter et al., 2018].

We also assess the ability of our model to perform out-of-distribution detection using in-distribution
(ID) / out of-distribution (OOD) pairs given as FashionMNIST/MNIST and CIFAR10/SVNH. Fol-
lowing the setting of Osawa et al. [2019], Immer et al. [2021] we calculate the area under the curve
(AUC) of a binary out-of-distribution classifier based on predictive entropies. Results are shown in
Table 2.

FMNIST CIFAR 10
Model Accuracy NLL OOD-AUC Accuracy NLL OOD-AUC
GWI-net 93.25 ±0.09 0.250 ±0.00 0.959 ±0.01 83.82 ±0.00 0.553 ±0.00 0.618 ±0.00
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER et al. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

Table 2: We report average accuracy, NLL and OOD-AUC on test data for 10 different train/test splits.
The results for FVI are obtained from Ma and Hernández-Lobato [2021] and for MAP, KFAC and
Ritter et al. results are provided in Immer et al. [2021] .

Our method performs best in all categories on the Fashion MNIST dataset achieving state-of-the-art
results. On CIFAR10 we obtain the highest accuracy and best NLL by a significant margin and
perform competitively in the OOD detection task.

6 Conclusion

In this paper, we developed a framework for generalized variational inference in infinite-dimensional
function spaces. We leveraged the function space perspective to develop a new inference approach
combining Gaussian measures and Wasserstein distance with predictive performance of deep neural
networks, yielding principled uncertainty quantification. The value of our method was demonstrated
on several benchmark datasets.
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A Appendix

A.1 Bayesian Inference as an Optimization Problem for an Infinite-Dimensional Prior
Measure

Let E be a (infinite dimensional) Polish space and B(E) the Borel σ-algebra on E. We denote the
set of Borel probability measures on B(E) as P(E) and choose a fixed prior measure P ∈ P(E).
The likelihood is described by a Markov kernel function p : Y × E → [0,∞) with

(y, f) 7→ p(y|f), (19)

where Y ⊂ RN is Borel measurable. The prior and the likelihood induce for any fixed y ∈ Y a
posterior measure denoted as P̂ ∈ P(E) [Ghosal and Van der Vaart, 2017, Chapter 1.3].

The next theorem shows that this posterior measure is the solution to a certain optimization problem.

Theorem 2 (Bayes Posterior as optimization). The Bayesian posterior measure P̂ is given as

P̂ = argmin
Q∈P(E)

{
−EQ

[
log p(y|F )

]
+ DKL(Q,P )

}
(20)

for any fixed prior measure P ∈ P(E) and fixed y ∈ Y such that f ∈ E 7→ p(y|f) > 0.

Proof. According to Bayes rule in infinite dimensions [Ghosal and Van der Vaart, 2017, Chapter 1.3]
we know that P̂ is dominated by P with Radon-Nikodym derivative given as

dP̂

dP
(f) =

p(y|f)

p(y)
, (21)

for f ∈ E where p(y) :=
∫
p(y|F = f) dP (f) is the marginal likelihood for y. The reverse is also

true and P is dominated by P̂ . We prove this by contraposition and therefore assume that P (A) > 0
for some A ∈ B(E). From Bayes rule we know that

P̂ (A) =

∫
A

p(y|f)

p(y)
dP (f) > 0 (22)

as the integrand is positive by assumption and P (A) > 0. This gives P̂ (A) > 0 and therefore that P
is dominated by P̂ . In this case standard rules for Radon-Nikodym derivatives give that

dP

dP̂
(f) =

p(y)

p(y|f)
, (23)

for f ∈ E. Note that without loss of generality we can assume that the optimal Q ∈ P(E) is
dominated by P (and therefore also dominated by P̂ ) since otherwise (20) is infinite by definition of
the KL divergence. For such a Q dominated by P it holds that

L(Q) := −EQ
[

log p(y|F )
]

+ DKL(Q,P ) (24)

= −
∫

log p(y|f) dQ(f) +

∫
log

dQ

dP
(f) dQ(f) (25)

= −
∫

log p(y|f) dQ(f) +

∫
log

dQ

dP̂
(f) dQ(f) +

∫
log

dP̂

dP
(f) dQ(f), (26)

where the last line follows from the chain rule for Radon-Nikodym derivatives. We further have

L(Q) = −
∫
p(y|f) dQ(f) + DKL(Q, P̂ ) +

∫
p(y|f)

p(y)
dQ(f) (Bayes Rule) (27)

= DKL(Q, P̂ ) + p(y) (28)
≥ p(y), (29)

since DKL(Q,P ) ≥ 0, with equality if and only if Q = P̂ . This proves the claim.
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A.2 Pointwise Evaluation as Weak Limit

To outline the problem briefly: If F ∼ N (m,C) is a GRE with mean m ∈ L2(X , ρ,R) and
covariance operatorC as defined in (9) then it is in general unclear what the distribution ofF (x) would
be for a fixed x ∈ X . The technical reason is that the pointwise evaluation πx : L2(X , ρ,R)→ R,
i.e.

πx(f) := f(x) (30)

is not well-defined. An element g of the space L2(X , ρ,R) is an equivalence class and only iden-
tifiable up to a ρ-nullset. This means that the definition of πx in (30) makes no sense whenever
ρ({x}) = 0 which is the case whenever ρ has a pdf w.r.t. the Lebesgue measure.

However, we will remedy this situation by defining for a fixed x ∈ X
F (x) := lim

n→∞
〈F, hn,x〉2 (31)

where hn,x ∈ L2(X , ρ,R) is an appropriately chosen sequence and the limit is to be understood as
convergence in distribution of the sequence of scalar random variables 〈F, hn,x〉2.

Theorem 3. Let F ∼ N (m,C) be a GRE in L2(X , ρ,R) with mean m ∈ L2(X , ρ,R) and covari-
ance operator C as defined in (9). Assume that ρ is a probability measure on X ⊂ RD and that ρ is
absolutely continuous with respect to the Lebesgue measure λ on RD with pdf ρ′. Denote the support
of the measure ρ by supp(ρ) and assume that x is an arbitrary point in the interior of supp(ρ) such
that m, k and ρ′ are continuous at x.

Let

η(t) =

{
exp

(
− 1

1−|t|2

)
if |t| < 1,

0 if |t| ≥ 1.
(32)

be the so called standard molifier and note that η is smooth with
∫
η(t) dt = 1. We further define

the sequence hn,x(t) := η
(
n(t− x)

)
/ρ′(t) for n ∈ N, t ∈ supp(ρ) and hn,x = 0 for t /∈ supp(ρ).

Then
〈F, hn,x〉2 D−→ N

(
m(x), k(x, x)

)
(33)

for n→∞ where D−→ denotes convergence in distribution.

Proof. Note that supp(hn,x) = B1/n(x) := {t ∈ RD : |t− x| ≤ 1
n} and B1/n(x) ⊂ supp(ρ) for

large enough n ∈ N since x is from the interior of supp(ρ). This means that hn,x ∈ L2(X , ρ,R) for
large enough n as ∫

hn,x(t) dρ(t) =

∫
supp(ρ)

(
η
(
n(t− x)

)
ρ′(t)

)2

ρ′(t) dλ(t) (34)

=

∫
supp(ρ)

η
(
n(t− x)

)
ρ′(t)

dt (35)

=

∫
B1/n(x)

η
(
n(t− x)

)
ρ′(t)

dt. (36)

The last expression is finite for large enough n because the integrand is continuous at x. According
to the definition of of GREs we therefore conclude that

〈F, hn,x〉2 ∼ N
(
〈m,hn,x〉2, 〈Chn,x, hn,x〉2

)
(37)

for large enough n ∈ N.

The next statement we show is that mn(x) := 〈m,hn,x〉2 → m(x) for n→∞. To this end notice
that

|mn(x)−m(x)| = |
∫
B1/n(x)

hn,x(t)
(
m(x)−m(t)

)
dρ(t)| (38)
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≤
∫
B1/n(x)

η
(
n(t− x)

)
|m(x)−m(t)| dt. (39)

Let now ε > 0 be arbitrary. For n large enough we |m(x)−m(t)| ≤ ε for all t ∈ B1/n(x) due to the
continuity of m in x. This immediately implies∫

B1/n(x)

η
(
n(t− x)

)
|m(x)−m(t)| dt ≤ ε

∫
B1/n(x)

η
(
n(t− x)

)
dt = ε, (40)

for large enough n which shows the convergence of mn(x) to m(x).

A similar argument shows that kn(x, x) := 〈Chn,x, hn,x〉2 → k(x, x) for n→∞.

We therefore conclude that

〈F, hn,x〉2 = 〈F, hn,x〉2 −mn(x) +mn(x) (41)

=
√
kn(x, x)

〈F, hn,x〉2 −mn(x)√
kn(x, x)︸ ︷︷ ︸
∼N (0,1)

+mn(x) (42)

D−→ N
(
m(x), k(x, x)

)
(43)

for n→∞ due to Slutsky’s theorem.

According to Theorem 3 we can simply define F (x) ∼ N (m(x), k(x, x)) for all x in the interior of
the support of ρ if m, k and ρ′ are continuous at x. These are mild assumptions and we can typically
assume that they are satisfied in practice.

A.3 The Wasserstein Metric for Probability Measures

Let E be a Polish space. For p ≥ 1, let Pp(E) denote the collection of all probability measures µ on
E with finite pth moment, that is, there exists some x0 in M such that:∫

M

d(x, x0)p dµ(x) <∞. (44)

The pth Wasserstein distance between two probability measures µ and ν in Pp(E) is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
E×E

d(x, y)p dγ(x, y)

)1/p

, (45)

where Γ(µ, ν) denotes the collection of all measures on E ×E with marginals µ and ν on the first
and second arguments respectively.

More details about the Wasserstein distance can be found in Chapter 7 of Ambrosio et al. [2005].

A.4 A Tractable Approximation of the Wasserstein Metric

Recall that the Wasserstein metric for the two Gaussian measures P = N (mP , CP ) and Q =
N (mQ, CQ) on the Hilbert space H = L2(X , ρ,R) is given as

W 2
2 (P,Q) = ‖mP −mQ‖22 + tr(CP ) + tr(CQ)− 2 · tr

[(
C

1/2
P CQC

1/2
P

)1/2]
. (46)

Further the operators CP and CQ are defined through trace-class kernels k and r as described in
Section 3.1. We will now discuss how to approximate each term in (46).

First, note that

‖mP −mQ‖22 =

∫ (
mP (x)−mQ(x)

)2
dρ(x) ≈ 1

N

N∑
n=1

(
mP (xn)−mQ(xn)

)2
, (47)
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which follows by replacing the true input distribution with the empirical data distribution. Second,
note that under very general conditions on k and ρ it holds that [Brislawn, 1991]

tr(CP ) =

∫
k(x, x) dρ(x) (48)

and similarly for CQ. Again by replacing ρ with the empirical data distribution we obtain natural
estimators:

tr(CP ) ≈ 1

N

N∑
n=1

k(xn, xn), (49)

tr(CQ) ≈ 1

N

N∑
n=1

r(xn, xn). (50)

Denote by λn(C) the n-th eigenvalue of a positive, self-adjoint operator C. By definition of the trace
and the square root of an operator we have

tr
[(
C

1/2
P CQC

1/2
P

)1/2]
=

∞∑
n=1

√
λn

(
C

1/2
P CQC

1/2
P

)
(51)

=

∞∑
n=1

√
λn

(
CQCP

)
, (52)

where the second line follows from the fact that the operator CQCP has the same eigenvalues as
C

1/2
P CQC

1/2
P [Hladnik and Omladič, 1988, Proposition 1]. The operator CQCP is given as

CQCP g(x) =

∫
r(x, x′)(CP f)(x′) dρ(x′) (53)

=

∫
r(x, x′)

( ∫
k(x′, t)f(t)dρ(t)

)
dρ(x′) (54)

=

∫ ∫
r(x, x′)k(x′, t)f(t) dρ(x′)dρ(t) (55)

=

∫
(r ∗ k)(x, t)f(t) dρ(t), (56)

where we define
(r ∗ k)(x, t) :=

∫
r(x, x′)k(x′, t) dρ(x′) (57)

for all x, t ∈ X . This means that CQCP is also an integral operator with (non-symmetric) kernel
r ∗ k. We again replace ρ with ρ̂ to obtain

(̂r ∗ k)(x, t) =
1

N

N∑
n=1

r(x, xn)k(xn, t). (58)

The spectrum of CQCP can now be approximated by the spectrum of the matrix 1
N (̂r ∗ k)(X,X)

[Rasmussen, 2003, cf. Chapter 4.3.2] or 1
NS

(̂r ∗ k)(XS , XS) where XS is a subsample of the data
points X of size NS < N . If we plug this approximation into (52) we obtain

tr
[(
C

1/2
P CQC

1/2
P

)1/2] ≈ NS∑
m=1

√
λm
( 1

NS
(̂r ∗ k)(XS , XS)

)
(59)

=
1√
NS

NS∑
m=1

√
λm

( 1

N
r(XS , X)k(X,XS)

)
, (60)

which is the last expression that we had to approximate.

Note that since CQCP has the same spectrum as the self-adjoint, positive, trace-class operator
C

1/2
P CQC

1/2
P we know that its eigenvalues are real, positive and converge to zero.
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A.5 Generalized Loss for Regression in Batch Mode

The batch version of the generalized loss is given as:

L̂ =
N

2
log(2πσ2) +

N

NB

NB∑
b=1

(
ynb
−mQ(xnb

)
)2

+ r(xnb
, xnb

)

2σ2
+

1

NB

NB∑
b=1

(
mP (xnb

)−mQ(xnb
)
)2

(61)

+
1

NB

NB∑
b=1

k(xnb
, xnb

) +
1

NB

NB∑
b=1

r(xnb
, xnb

)− 2√
NBNS

NS∑
s=1

√
λs
(
r(XS , XB)k(XB , XS)

)
,

(62)

NB ∈ N is the batch-size. The indices n1, . . . , nNB
are the batch-indices and XB is the batch matrix.

A.6 GWI for (Multiclass) Classification

Let {(xn, yn)}Nn=1 ⊂ X × Y be data with X ⊂ RD and Y = {1, . . . , J}, where J ∈ N represents
J ≥ 2 distinct classes.

Model We use the same likelihood for y := (y1, . . . , yN ) as described in Chapter 4 of Matthews
[2017] which is:

p(y|f1, . . . , fJ) =

N∏
n=1

p(yn|f1, . . . , fJ) (63)

with
p(yn|f1, . . . , fJ) := hεyn

(
f1(xn), . . . , fJ(xn)

)
, (64)

for yn ∈ {1, . . . , J}. The function hε` is defined as

hε`(t1, . . . , tJ)

1− ε if ` = argmax
j=1,...,J

{tj},
ε

J−1 if otherwise.
(65)

for ` = 1, . . . , J for ε > 0. We chose ε = 1% in our implementation.

We assume that F1, . . . FJ are independent GREs on L2(X , ρ,R) with prior means mP,j and prior
covariance operators CP,j , j = 1, . . . , J .

The variational measures for F1, . . . , FJ are assumed to be independent and given as Qj =

N
(
mQ,j , CQ,j

)
for j = 1, . . . , J . We further write Q

((
F1(x), . . . , FJ(x)

)
∈ A

)
, A ⊂ RJ for the

variational (posterior) approximation of the probability of the event {
(
F1(x), . . . , FJ(x)

)
∈ A}.

This leads to the following expected log-likelihood

EQ
[

log p(y|F1, . . . , FJ)
]

(66)

=

N∑
n=1

EQ
[

log p(yn|F1, . . . , FJ)
]

(67)

=

N∑
n=1

log(1− ε)Q
(

argmax
j=1,...,J

{Fj(xn)} = yn
)

+ log(
ε

J − 1
)Q
(

argmax
j=1,...,J

{Fj(xn)} 6= yn
)

(68)

≈
N∑
n=1

log(1− ε)S(xn, yn) + log(
ε

J − 1
)
(
1− S(xn, yn)

)
, (69)

with

S(x, j) :=
1√
π

I∑
i=1

wi
∏
l 6=j

φ
(√2rj(x, x)ξi +mQ,j(x)−mQ,l(x)√

rl(x, x)

)
(70)
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for any x ∈ X , j = 1, . . . , J where (wi, ξi)
I
i=1 are the weights and roots of the Hermite polynomial

of order I ∈ N. This is the same Gauss-Hermite approximation as described in Chapter 4 of Matthews
[2017].

The final objective for multiclass classification is given as

L = −EQ
[

log p(y|F1, . . . , FJ)
]

+

J∑
j=1

W 2
2 (Pj , Qj), (71)

where the expected log-likelihood is approximated by (69) and each Wasserstein distanceW 2
2 (Pj , Qj)

can be estimated as in (14)-(15).

Prediction The probability that an unseen point x∗ ∈ X belongs to class j ∈ {1, . . . , J} is given
as

Q(Y ∗ = j) = (1− ε)S(x∗, j) +
ε

J − 1

(
1− S(x∗, j)

)
(72)

for any x∗ ∈ X . We predict the class label as maximiser of this probability. If we apply tempering,
we simply replace every rj(x, x) with T · rj(x, x) for j = 1, . . . , J in the definition of S(x, j).

Negative Log Likelihood The variational approximation to the negative log-likelihood is

NLL = − log
[
(1− ε)S(x∗, y∗) +

ε

J − 1

(
1− S(x∗, y∗)

)]
(73)

for any point x∗ ∈ X for which we know that the class label is y∗ ∈ {1, . . . , J}.

A.7 Implementation Details: Regression

The Regression model is given as F ∼ N (0, C) and

Yn = F (xn) + εn (74)

with εn ∼ N (0, σ2), n = 1, . . . , N . The covariance operator CP depends on the choice of a kernel
k, i.e. CP = CP,k for which we use the ARD kernel k given as

k(x, x′) = σ2
f exp

(
− 1

2

D∑
d=1

(xd − x′d)2

α2
d

)
(75)

for x, x′ ∈ RD. We refer to σf > 0 as kernel scaling factor, to αd > 0 as length-scale for dimension
d and to σ > 0 as observation noise.

The data is first randomly split into three categories: training set 80%, validation set 10% and test set
10%. The observations Y are then standardised by subtracting the empirical mean (of the training
data) and dividing by the empirical standard deviation (of the training data). The inputs data X is left
unaltered.

The number of inducing points The number of inducing points M is treated as a hyperparameter,
this means we train the model for each M ∈ {0.5

√
N,
√
N, 1.5

√
N, 2
√
N} and choose the best

model. For GWI: SVGP we use M ∈ {1
√
N, 2
√
N, . . . 5

√
N}.

The choice of inducing points The input points Z1, . . . , ZM in (18) are sampled independently
from the training data X and then fixed for GWI-net. For GWI: SVGP they are only initialised this
way and then learned by maximising the generalized loss.

Prior hyperparameters The prior hyperparameters σf , α := (α1, . . . , αD) and σ are chosen by
maximising the marginal log-likelihood for the data X = Z and the corresponding observations,
which we denote YZ . Note that the marginal log-likelihood is tractable and given as

log p(yZ) = −1

2
log
(

det
(
k(Z,Z) + σ2IM

))
− 1

2
yZ

T
(
k(Z,Z) + σ2IM

)−1
yZ . (76)

and can therefore be evaluated in O(M3) = O(N
√
N).
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Variational mean For GWI-net we use a neural network with L = 2 hidden layers, width D1 =
D2 = 10 and tanh as activation function. This follows the set-up of Ma and Hernández-Lobato
[2021].

Variational kernel The kernel r which is chosen as described in (18) and therefore depends on the
covariance matrix Σ ∈ RM×M and the M ∈ N inducing points Z = (Z1, . . . , ZM ) ∈ RD×M . We
parametrise Σ as Σ = LLT with initialisation

L = Chol
((
k(Z,Z) +

1

σ2
k(Z,X)k(X,Z)

)−1
)
, (77)

where k(Z,X)k(X,Z) is approximated by batch-sizing as N
NB

k(Z,XB)k(XB , Z). This corre-
sponds to an approximation of the optimal choice for Σ in SVGP [Titsias, 2009].

Parameters in the generalized loss The generalized loss in Appendix A.5 depends further on NS ,
NB and XS . The batch-size NB is chosen to be NB = 1000 for N > 1000. For N < 1000 we use
the full training data. The comparison points XS are sampled independently from the training data
X in each iteration. We train here for 1000 epochs on the regression task and 100 epochs on the
classification task following Ma and Hernández-Lobato [2021].

Tempering the predictive posterior Wenzel et al. [2020] observe that the performance of many
Bayesian neural networks can be improved by tempering the predictive posterior. Tempering refers
to a shrinking of the predictive posterior variance by a factor of αT ∈ [0, 1]. This effect has also
been observed for Gaussian processes in Adlam et al. [2020] where it can be interpreted as elevating
problems that occur from prior misspecification. The prior hyperparameters for the ARD kernel k in
(16) are selected by maximising the marginal log-likelihood on a subset of the training data. This
procedure may lead to prior misspecification, which is why we decided to temper the predictive
posterior, which means that we use the predictive distribution

Y ∗|Y ∼ N
(
mQ(x∗), αT

(
r(x∗, x∗) + σ2

))
(78)

for an unseen data point x∗ ∈ X . The (tempered) NLL for each data point is given as

NLL := − log pαT
(y∗|y) (79)

=
1

2
log
(
αT · (r(x∗, x∗) + σ2)

)
+

1

2

(y − y∗)2

αT · (r(x∗, x∗) + σ2)
+

1

2
log(2π). (80)

The tempering factor αT is chosen as minimiser of the average NLL on the validation set. The
final predictions on the test set are made using this optimal αT and (78). Note however that for the
NLL numbers reported in Table 1 we add log(σ̂train) to (80) where σ̂train is the empirical standard
deviation of the training data. This is done for fair comparison as it is how the NLL is calculated in
Ma and Hernández-Lobato [2021].

A.8 Implementation Details: Classification

As described in section (A.6) we use the prior mean functions mP,j and kernels kj for j = 1, . . . , J .
For our experiments we chose mP,j = 0 for j = 1, . . . , J and k := k1 = . . . , kJ where k is the
ARD kernel in (16).

We use a multi-output neural network for the variational means mQ,j and an SVGP kernel for each
rj , j = 1, . . . , J .

The number of inducing points The number of inducing points M is treated as a hyperparameter,
this means we train the model for each M ∈ {0.5

√
N, 0.75

√
N,
√
N} and choose the best model.

The choice of inducing points The input points Z1, . . . , ZM in (18) are sampled independently
from the training data X and then fixed for GWI-net.

Prior hyperparameters The prior hyperparameters are initialised as described in A.7, thus max-
imising the marginal likelihood of a regression model, since the marginal likelihood of our classifica-
tion model is intractable.
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Variational mean We use the same CNN architecture as described in Immer et al. [2021], Schneider
et al. [2019] for all models.

Variational kernel Each variational kernel rj uses the same inducing points Z but gets an individ-
ual matrix Σj ∈ RM×M for j = 1, . . . , J . They are all initialised as described in A.7.

Parameters in the generalized loss The generalized loss in Appendix A.5 depends on NS , NB
and XS . The batch-size NB is chosen to be NB = 1000 for N > 1000. For N < 1000 we use the
full training data. The comparison points XS are sampled independently from the training data X in
each iteration. We train 100 epochs on the classification task following Ma and Hernández-Lobato
[2021].

Tempering the predictive posterior For the same reasons as outlined in Appendix A.7 we temper
the predictive posterior. Recall that the NLL for classification is given as

NLL = − log
[
(1− ε)S(x∗, y∗) +

ε

J − 1

(
1− S(x∗, y∗)

)]
(81)

for any point x∗ ∈ X for which we know that the class label is y∗ ∈ {1, . . . , J}. We use a tempering
factor αj > 0 for each variational measure Qj ∼ N (mQ,j , αjrj), j = 1, . . . , J . We train the model
with αj = 1 for all j = 1, . . . , J and select the tempering factors afterwards as minimiser of the
average NLL on the validation set.

A.9 Illustrative Example for Two Dimensional Inputs

In Foong et al. [2020] it is observed that several BNN posterior approximation techniques struggle
with the quantification of in-between uncertainty. The red points mark where observations were made
and it is clear that mean-field variational inference (MVFI) [Hinton and Van Camp, 1993] and Monte
Carlo Dropout (MCDO) [Gal and Ghahramani, 2016] exhibit unjustifiably high posterior certainty
in the area where no observations are made. This is a pathology of the approximation technique as
the true Bayesian posterior which is approximated to very high precision by Hamiltonian Monte
Carlo (HMC) [Neal, 2012] or the infinite-width GP limit [Matthews et al., 2018] do not display such
behaviour.

In Figure 2 our method GWI-net is displayed next to the methods described in Foong et al. [2020].
As one can observe our model is keenly aware of its limited ability to predict points in-between the
two clusters of observed data points.
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Figure 2: Regression on a 2D synthetic dataset (red crosses). The colour plots show the standard
deviation of the output, σ[f(x)], in 2D input space. The plots beneath show the mean with 2-standard
deviation bars along the dashed white line (parameterised by λ). MFVI and MCDO are overconfident
for λ ∈ [−1, 1].

A.10 Model Misspecification in Gaussian Wasserstein Inference

The generalized loss in Appendix A.5 is a valid optimization target for any mP ,mQ ∈ L2(X , ρ,R)
and any trace-class kernels k and r. This gives the user a lot of abilities to specify different models,
by experimenting with various choices, specifically for mQ and r. However with great power comes
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great responsibility: it is quite easy to misspecify GWI. To illustrate the issue let us use a periodic
kernel k [Duvenaud, 2014] given as

k(x, x′) := σ2
f exp

(
− 1

α2
sin2(π|x− x′|/p)

)
(82)

and the SVGP kernel r in (18). By the definition of r the uncertainty will be low for points similiar
to the inducing points Z, i.e. for points x ∈ X k(x, zm) ≈ σ2

f for all m = 1, . . . ,M . A problem
now occurs, if the posterior mean mQ does not respect the knowledge embedded in k and r. Lets for
example use a simple fully connected deep neural network mQ and choose the point x∗ := z1 + 10p.
Assume further that z1, . . . , zM < x∗. Then we get k(x∗, zm) = k(z1, zm) for all m = 1, . . . ,M
due to the periodicity of sin(x) and therefore r(x∗, x∗) = r(z1, z1). It is however very unlikely that
the neural network will predict mQ(z1) as well as mQ(x∗) since it is unaware of this periodicity.

This small example should illustrate that it is crucial that mQ is compatible with the prior knowledge
reflected in k and r. However, note that this problem is not present for our model, GWI-net. The
ARD kernel encodes the inductive bias that the underlying function is infinitely differentiable and that
points close to each other have highly correlated functional outputs. A simple fully connected DNN
with tanh activation function is indeed smooth and further it is reasonable to assume that predictions
are more unreliable the further they are from the data (as measured by the squared euclidean distance).
The ARD kernel is in this sense compatible with a fully connected DNN.

It shall be noted that the DNN used for the classification examples in (5) used convolutional layers as
explained in Appendix A.8. This can be understood as embedding prior knowledge about translation
equivariance into the DNN [Goodfellow et al., 2016, Chapter 9.4]. It might therefore be desirable
to use a prior kernel k that embeds similar properties such as the kernel suggested by Van der Wilk
et al. [2017]. We considered this to be beyond the scope of this paper but the interaction of DNN
architecture and the choice of prior kernels is an interesting avenue for future research.
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